
APPROXIMATION
ALGORITHMS

Dario Fanucchi

Why Approximate?

Exact Solution Exists

But Searching…

Takes time

Outline

Specific Algorithms:
Bin Packing

Real Valued Knapsack

Traveling Salesperson

Graph Colouring

Systems of Equations

General Considerations

Trimming an exhaustive search

Time-outs and implementation

Packing the Rubbish

The Problem:

•n real numbers {s1, s2, .., sn} in [0;1]

• pack them into minimum number of bins of
size 1.

Exact Algorithm = O(nn/2)

Approximate Algorithm(FFD) = O(n2)

At most 0.3√√√√n extra bins used.

FFD Strategy

First Fit Decreasing Strategy

• Sort the values of si

• Pack values into first bins they fit in.

S = {0.2, 0.4, 0.3, 0.4, 0.2, 0.5, 0.2, 0.8}

Sorted: {0.8, 0.5, 0.4, 0.4, 0.3, 0.2, 0.2, 0.2}

0.8(s1)

0.2(s6)

0.5(s2)

0.4(s3)

0.4(s4)

0.3(s5)

0.2(s7)

0.2(s9)

Packing the Bags
The Problem:

•Knapsack: real (weight, value) pairs

• Find a combination of maximal value that
fits in boundry weight C.

Problem is NP-complete

Many Approximations: Time vs. Accuracy Tradeoff…

The Algorithm
sKnapk Algorithm

Choose k

Generate k-subsets
of items

Greedily add to
subsets

Take maximum

How close are we?
sKnapk accuracy

Ratio of 1+1/k to
optimal!!

O(knk+1)

Choose k wisely!

World Tour
The Problem:

•Traveling Salesperson Problem

• Find minimal tour of the graph that visits
each vertex exactly once.

Famous NP-complete problem

Several Approximation strategies exist

But none is very accurate

Nearest Neighbour
Start at an arbitrary
vertex

At each step add the
shortest edge to the end
of the path

No guarantee of being
within a constant bound
of accuracy.

1 2

34

20

15

35

25

12

10

Shortest-Link
Works like Kruskal’s
Algorithm

Find shortest edges

Ensure no cycles

Ensure no vertex
with 3 edges

Add edge

1 2

34

20

15

35

25

12

10

Salesperson’s Dilemma
Exact = Time Drain?

Approximate = only
a guess?

Solution: Branch and
Bound?

Colouring in
The Problem:

•Graph colouring problem

•Exhibit a colouring of vertices with the
smallest number of colours such that no edge
connects two vertices of the same colour

NP-Complete problem

Like TSP, approximations are unbounded

The Greedy One
Sequential
Colouring
Strategy

Assign minimum
possible colour to
each vertex that is
not assigned to one
of it’s neighbours.

Widgerson Arrives

Recursive Algorithm

Base Case: 2 Colourable Graphs

Find the subgraph of the
Neighbourhood of a given vertex,
recursively colour this subgraph.

At most 3√n colours for an n-colourable
graph.

Trace of Widgerson
First run
recursively on
highest degree
vertex

Then run SC on
the rest of the
graph, deleting
edges incident
to N(v)

Solving Systems of Equations
in Linear Time

Exact Algorithm = Gaussian
Elimination: O(n3)

Approximate Algorithm=Jacobi
Method: Faster

x[m+1]=D-1[b-(L+U)x[m]]

xk
[m+1] =(1/akk)(bk-ak1x1

[m]-…-aknx1
[m])

Gardening
Trimming exhaustive
search

Branch&Bound

Backtracking

Mark a node as
infeasible, and stop
searching that point.

Leave while you’re ahead

Keep track always of
the best solution so
far

Write this out when
time is up

Keeping track of time
(C++)

#include<ctime>

clock_t t1, t2;

t1 = clock();

//do stuff

t2 = clock();

double Time;

Time=double(t1)-double(t2);

Time/=CLOCKS_PER_SEC;

In Summation

When exact code takes too long (and
there are marks for being close to
correct) approximate.

Trade-off: Time vs. Accuracy

Search for simplifications to problems
that do not need Approx. Solutions.

