## APPROXIMATION ALGORITHMS

Dario Fanucchi

## Why Approximate?

## Exact Solution Exists

## But Searching...



## Takes time

## Outline

Specific Algorithms:

- Bin Packing
- Real Valued Knapsack
- Traveling Salesperson
- Graph Colouring
- Systems of Equations

General Considerations

- Trimming an exhaustive search
- Time-outs and implementation


## Packing the Rubbish

## The Problem:

- n real numbers $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$ in $[0 ; 1]$
- pack them into minimum number of bins of size 1.
Exact Algorithm $=\mathbf{O}\left(\mathrm{n}^{\mathrm{n} / 2}\right)$
Approximate Algorithm(FFD) $=\mathbf{O}\left(\mathbf{n}^{2}\right)$
At most $0.3 \sqrt{n}$ extra bins used.


## FFD Strategy

## First Fit Decreasing Strategy

- Sort the values of $s_{i}$
- Pack values into first bins they fit in.

$$
S=\{0.2,0.4,0.3,0.4,0.2,0.5,0.2,0.8\}
$$

Sorted: $\{0.8,0.5,0.4,0.4,0.3,0.2,0.2,0.2\}$

|  |
| :---: |
| $0.2\left(\mathrm{~s}_{6}\right)$ |
| $0.8\left(\mathrm{~s}_{1}\right)$ |



|  |
| :--- |
| $0.2\left(s_{7}\right)$ |
| $0.3\left(s_{5}\right)$ |
| $0.4\left(s_{4}\right)$ |



## Packing the Bags

## The Problem:

-Knapsack: real (weight, value) pairs

- Find a combination of maximal value that fits in boundry weight $C$.

Problem is NP-complete

Many Approximations: Time vs. Accuracy Tradeoff...

## The Algorithm


r sKnap ${ }_{\text {k }}$ Algorithm
r Choose k
r Generate k-subsets of items
$r$ Greedily add to subsets
$r$ Take maximum

## How close are we?

r sKnap ${ }_{k}$ accuracy

$r$ Ratio of $1+1 / k$ to optimal!!
$\mathrm{O}\left(\mathrm{kn} \mathrm{n}^{\mathrm{k}+1}\right)$
r Choose k wisely!

## World Tour

## The Problem:

-Traveling Salesperson Problem

- Find minimal tour of the graph that visits each vertex exactly once.

Famous NP-complete problem

Several Approximation strategies exist
But none is very accurate

## Nearest Neighbour

$r$ Start at an arbitrary vertex
$r$ At each step add the shortest edge to the end of the path
$r$ No guarantee of being within a constant bound
 of accuracy.

## Shortest-Link

r Works like Kruskal's Algorithm
$r$ Find shortest edges
r Ensure no cycles
$r$ Ensure no vertex with 3 edges
$r$ Add edge


## Salesperson's Dilemma


$\checkmark$ Exact $=$ Time Drain?
$\checkmark$ Approximate $=$ only a guess?
$r$ Solution: Branch and Bound?

## Colouring in

## The Problem:

- Graph colouring problem
-Exhibit a colouring of vertices with the smallest number of colours such that no edge connects two vertices of the same colour

NP-Complete problem
Like TSP, approximations are unbounded

## The Greedy One

$\checkmark$ Sequential Colouring Strategy
$r$ Assign minimum possible colour to each vertex that is not assigned to one of it's neighbours.


## Widgerson Arrives

$r$ Recursive Algorithm
r Base Case: 2 Colourable Graphs
$r$ Find the subgraph of the Neighbourhood of a given vertex, recursively colour this subgraph.
$r$ At most $3 \sqrt{n}$ colours for an $n$-colourable graph.

## Trace of Widgerson

$r$ First run recursively on highest degree vertex
$\checkmark$ Then run SC on the rest of the graph, deleting edges incident to $N(v)$


## Solving Systems of Equations in Linear Time

$r$ Exact Algorithm = Gaussian Elimination: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
r Approximate Algorithm=Jacobi Method: Faster
$r \underline{\mathbf{x}}^{[\mathrm{m}+1]}=\mathrm{D}^{-1}\left[\underline{\mathrm{~b}}-(\mathrm{L}+\mathrm{U}) \underline{\mathbf{x}}^{[\mathrm{m}]}\right]$
$r x_{k}{ }^{[m+1]}=\left(1 / a_{k k}\right)\left(b_{k}-a_{k 1} x 1^{[m]}-\ldots-a_{k n} x 1^{[m]}\right)$

## Gardening

$\checkmark$ Trimming exhaustive search
r Branch\&Bound
r Backtracking
$r$ Mark a node as infeasible, and stop searching that point.


## Leave while you're ahead

$r$ Keep track always of the best solution so
\#include<ctime> far
$r$ Write this out when time is up
$\checkmark$ Keeping track of time
clock_t t1, t2;
t1 = clock();
//do stuff
t2 = $\operatorname{clock}()$;
double Time;
Time=double(t1)-double(t2);
Time/=CLOCKS_PER_SEC; (C++)

## In Summation

$\checkmark$ When exact code takes too long (and there are marks for being close to correct) approximate.
$r$ Trade-off: Time vs. Accuracy
$r$ Search for simplifications to problems that do not need Approx. Solutions.

