APPROXIMATION ALGORITHMS

Dario Fanucchi

Why Approximate?

Takes time

Exact Solution Exists

But Searching...

Outline

Specific Algorithms:

- Bin Packing
- Real Valued Knapsack
- Traveling Salesperson
- Graph Colouring
- Systems of Equations
- **General Considerations**
 - Trimming an exhaustive search
 - Time-outs and implementation

Packing the Rubbish

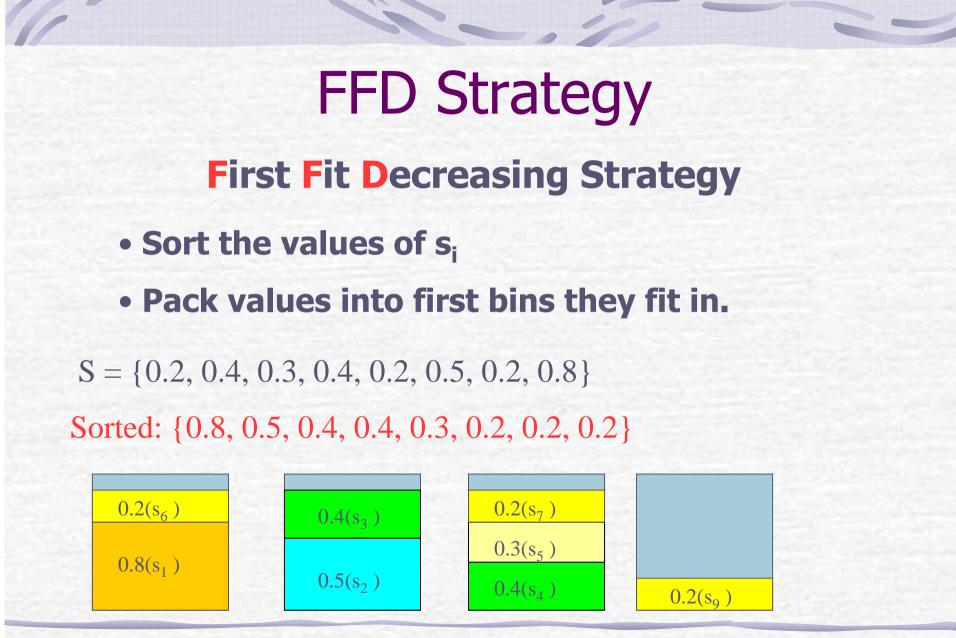
The Problem:

•n real numbers {s₁, s₂, ..., s_n} in [0;1]

• pack them into minimum number of bins of size 1.

Exact Algorithm = O(n^{n/2})

Approximate Algorithm(FFD) = $O(n^2)$ At most $0.3\sqrt{n}$ extra bins used.



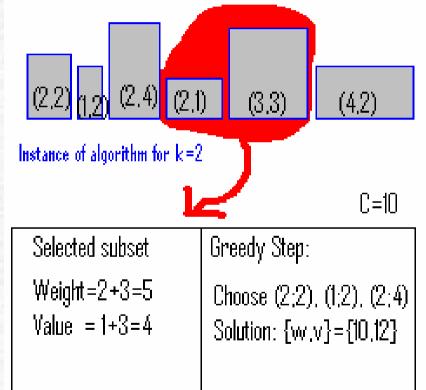
Packing the Bags The Problem:

- •Knapsack: real (weight, value) pairs
- Find a combination of maximal value that fits in boundry weight C.

Problem is NP-complete

Many Approximations: Time vs. Accuracy Tradeoff...

The Algorithm



sKnap_k Algorithm

- Choose k
- Generate k-subsets of items
- Greedily add to subsets
 - Take maximum

How close are we? **sknap**_k accuracy

Ratio of 1+1/k to optimal!!

O(kn^{k+1})

Choose k wisely!

World Tour

The Problem:

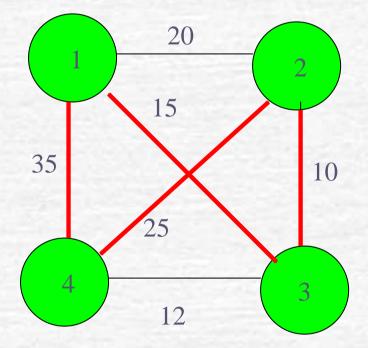
- •Traveling Salesperson Problem
- Find minimal tour of the graph that visits each vertex exactly once.

Famous NP-complete problem

Several Approximation strategies exist But none is very accurate

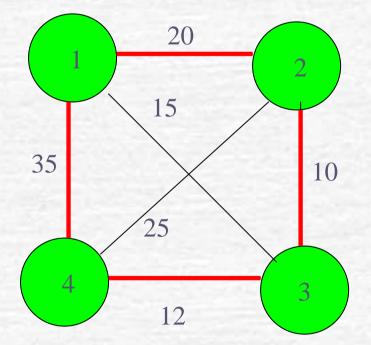
Nearest Neighbour

- Start at an arbitrary vertex
- At each step add the shortest edge to the end of the path
- No guarantee of being within a constant bound of accuracy.



Shortest-Link

- Works like Kruskal's
 Algorithm
- Find shortest edges
- Ensure no cycles
- Ensure no vertex with 3 edges
- Add edge



Salesperson's Dilemma

✓ Exact = Time Drain?

Approximate = only
 a guess?

Solution: Branch and Bound?

Colouring in

The Problem:

•Graph colouring problem

•Exhibit a colouring of vertices with the smallest number of colours such that no edge connects two vertices of the same colour

NP-Complete problem

Like TSP, approximations are unbounded

The Greedy One

Sequential
 Colouring
 Strategy

Assign minimum possible colour to each vertex that is not assigned to one of it's neighbours.

Widgerson Arrives

- Base Case: 2 Colourable Graphs
- Find the subgraph of the Neighbourhood of a given vertex, recursively colour this subgraph.
- At most $3\sqrt{n}$ colours for an n-colourable graph.

Trace of Widgerson

- First run recursively on highest degree vertex
- Then run SC on the rest of the graph, deleting edges incident to N(v)

Solving Systems of Equations in Linear Time

- **Exact Algorithm** = Gaussian Elimination: $O(n^3)$
- Approximate Algorithm=Jacobi Method: Faster
- $\mathbf{x}^{[m+1]} = \mathbf{D}^{-1}[\underline{\mathbf{b}} (\mathbf{L} + \mathbf{U})\underline{\mathbf{x}}^{[m]}]$
- $x_k^{[m+1]} = (1/a_{kk})(b_k a_{k1}x1^{[m]} ... a_{kn}x1^{[m]})$

Gardening

- Trimming exhaustive search
- Franch&Bound
- Backtracking
- Mark a node as infeasible, and stop searching that point.

Leave while you're ahead

- Keep track always of the best solution so far
- Write this out when time is up
- Keeping track of time (C++)

#include<ctime>
clock_t t1, t2;
t1 = clock();
//do stuff
t2 = clock();

double Time; Time=double(t1)-double(t2); Time/=CLOCKS_PER_SEC;

In Summation

- When exact code takes too long (and there are marks for being close to correct) approximate.
- Trade-off: Time vs. Accuracy
- Search for simplifications to problems that do not need Approx. Solutions.